To address the demand of equivalent self-noise suppression in a distributed hydroacoustic sensing system, this study proposes a method to enhance the acoustic sensitivity and signal-to-noise ratio (SNR) using space division multiplexed (SDM) technology based on multi-core fiber (MCF). Specifically, a dual-channel demodulation system for distributed acoustic sensing is designed using MCF. The responses of different cores in MCF are almost consistent under external acoustic pressure, while their self-noise is inconsistent. Accordingly, the acoustic pressure phase sensitivity (APPS) and SNR gain based on the accumulation of dual-channel signals are analyzed, which are verified by experiments. It is shown that the self-noise correlation coefficient between the two cores is 0.11, increasing the noise power by 3.46 dB. The APPS is increased by 5.97 dB re 1 rad/μPa after the accumulation of two-core signals, which is close to the theoretical value (6 dB). The equivalent self-noise is reduced by 2.54 dB. The experimental results reveal that the enhancement of acoustic pressure phase shift sensitivity and SNR can be achieved by the space division multiplexing (SDM) of multi-core signals, which is of great significance for suppressing the equivalent self-noise of the system and realizing the acoustic pressure detection of weak underwater signals.
Loading....